
27.05.2008 Page 1 of 15

 Note 60233 - Oracle rollback segments, more information.

Note Language: English Version: 32 Validity: Valid from 27.09.2004

Summary

Symptom
Background information and explanation of rollback segment problems.

More Terms
ORA-01555 ORA-01628 ORA-01650 FET PRS_1 PRS_2 PRS_3 PRS_4 PRS_5 PRS_6
PRS_7 PRS_8 PRS_9 PRS_10 RBS rollback segment max extents
snapshot PSAPROLL optimal

Cause and Prerequisites
This is an ADJUNCT to notes 16277 and 3807 not a replacement
for them, it is VITAL you read the applicable notes. This note is long
explanation of what rollback segments are and do, covering the background
needed to understand the resolution of rollback errors.
After the background information I have included a Question and Answer
section for common questions asked in regard to rollback segments.

*** After reading this note please feel free to send me any corrections

*** or comments to "glenn.cadman@sap-ag.de" .

*** Any questions to be included in the Q&A section are also welcome.

*** Unfortunately I only speak English and a little Japanese so if

*** possible can you mail me in either English or Japanese.

Solution

Oracle uses rollback segments for 2 purposes :

Purpose 1 : Provision to undo incomplete database changes.

The first and most important use is to insure that in case of a problem,
update/insert/delete transactions can be undone safely, preventing logical
inconsistencies with the data.

To understand this lets look at a simple example :
Imagine a bank transfer of $50, from a company called PAS, to a company
called Elcaro. For this to be successful the following changes must be made
:
1. Debit $50 from the balance of PAS's account
2. Write a record of the debit to PAS's history table.
3. Credit $50 to the balance of Elcaro account.
4. Write a record of the credit to Elcaro's account history table.

In a normal situation the database will update PAS's account balance

27.05.2008 Page 2 of 15

 Note 60233 - Oracle rollback segments, more information.

record, insert a debit record into PAS's history table, update Elcaro's
balance record and finally insert a credit record into Elcaro's history
table. Thus to perform a transfer at least 4 separate database changes must
be made.

Imagine the database updated PAS's account with the $50 debit (1.) before
the DBA killed the transfer program leaving steps (2.) (3.) and (4.)
uncompleted. Obviously a debit does not have any meaning without a
corresponding credit, hence a mechanism is needed to ensure that the debit
is not permanently saved without the corresponding credit and history
records also being permanently saved.

This concept is the basis of a TRANSACTION: a logical unit work that is
either successfully completed and saved (committed), or it is unsuccessful
(fails) and all changes made by the transaction are undone/removed. Undoing
of database changes by failed transactions is know as a ROLLBACK.

Now the question is:

"What is the mechanism Oracle uses to enable the rollback (undoing) of changes
made by unsuccessful transactions ?"
The answer is simple, oracle writes a COPY of the way the data was like
BEFORE making changes. If a transaction fails or is canceled for any
reason, then this copy used to OVERWRITE the changed database entries with
the original database entries. The copies are know as ROLLBACK ENTRIES, and
are stored within structures called ROLLBACK SEGMENTS. Rollback entries
that form part of an uncompleted transaction are known as "active entries"
as they form part of an "active" transaction. "Active entries" are not
released or reused until the transaction is completed. When a transaction
is completed the rollback entries are tagged as completed and the rollback
segment space made available for reuse. The completed entries are known as
"released entries".

Please note that even though rollback entries are "released", the entries
are not NOT ERASED or DELETED until the rollback segment has completed a
full cycle and ORACLE starts overwriting the "released entries" with new
"active entries".

You can visualize a rollback segment as a circular entity. I like to think
of rollback segments in terms of a circular railroad track. A train travels
around the track never reaching the end, because as soon as it does, it is
back to its starting point, the track behind the train was used the
shortest time ago, the track ahead was used the longest time ago. With
rollback segments, ORACLE has a pointer to the current position in the
segment, behind the pointer lay the rollback entries just created, in front
are the rollback entries written longest ago. Once ORACLE reaches the last
extent of the rollback segment it loops back to the first extent
overwriting the entries it wrote during the last cycle (unless there are
still "active entries" remaining in the extent, more about that latter!).

When a transaction is begun, it is assigned to ONE rollback segment, ALL
rollback entries generated by that transaction, are ONLY written that
rollback segment. The rollback segment typically assigned is the one with
the fewest active transactions (uncompleted updates / inserts / deletes).
Using the train analogy, when a passenger books a ticket they are assigned
to a particular train, once assigned a train the passenger cannot change
trains or tracks until they have completed the trip.

27.05.2008 Page 3 of 15

 Note 60233 - Oracle rollback segments, more information.

Large update transactions can generate more rollback entries than can
stored within the assigned rollback segment. If this happens, ORACLE tries
to increase the size of the rollback segment, to allow more active rollback
entries to saved. This is done by dynamically adding extents (chunks of
free space) to the rollback segment requiring additional space. Using the
train analogy, if the track ahead is in use, then new track is inserted to
prevent the train stopping.

When ORACLE is unable to add addition extents the transaction will be
canceled (rolled back) and one of the following messages returned to the
program :

ORA-01650 unable to extend rollback segment xxx by nnn in tablespace PSAPROLL
ORACLE speak for:
"I am unable to allocate a chunk of space for a new rollback segment extent
because I can find no contiguous chunk of storage of that size (nnn 8K
blocks) in the PSAPROLL tablespace's datafiles, please free up space or
add a new datafile to your PSAPROLL tablespace"

ORA-1628 max # of extents nnn reached for rollback segment xxx
ORACLE speak for:
"I am unable to allocate any further extents to this rollback segment
because the maximum number of extents limitation defined in the storage
parameters of the rollback segment has been reached"

See notes 16277 and 3807 for resolution and further explanation of the above errors.

It is important to note that only transactions that CHANGE data generate
rollback entries. Transactions that do not change data are know as
"read-only" transactions and by definition don't generate rollback entries.
Thus it is impossible for read-only transaction to generate the above
oracle errors.

Purpose 2: Maintaining a read consistent view of the database.

Using our example of a $50 PAS to Elcaro transfer, imagine that the banks
monthly account statement generator/report is run at the SAME TIME as the
transfer. As bank customers we expect that the credit and debits shown in
our statement history will reconcile to our account balance. The statement
generator may perform the following task list:
1. Get all account and account balances from account balance table.
2. For each of the accounts from 1. obtain all the credit /debit history
records.
3. Get the name and address of the account holder.
4. Sort and format the above information and print statement.

If the account transfer program added history records between the statement
report obtaining the account balances (1.) and selecting the debit/credit
history records (2.) then the credit/debit list could find extra records
which would be inconsistent with the account balance. (because those
debit/credit records where added after the account balance was extracted)
Using our example the PAS's statement may show an addition $50 debit
inconsistent with PAS's account balance.

27.05.2008 Page 4 of 15

 Note 60233 - Oracle rollback segments, more information.

Thus the database needs a mechanism to allow transactions to VIEW a
CONSISTENT SET of DATA, unaffected by changes made by other transactions
during the time the transaction is active.
This facility is known as READ CONSISTENCY.

One method to facilitate read consistency would be to wait until all the
tables the transaction needs to access are "free" from any updates, then
lock all them against any further changes until the transaction has
finished running. An effective method, but this would cause processes to
wait for a turn to lock required tables, seriously handicapping database
performance.

However there is another possibility to maintain read consistency !
Remember, ORACLE has a copy of the old data stored in the rollback segments
as rollback entries ! Even after a transaction is completed, and the
rollback entries are released for reuse, they will remain accessible until
being overwritten during the next cycle of the rollback segment. Thus by
combining a database table read with a rollback segment entries read,
ORACLE can build a view the data, consistent with the point in time at
which the transaction was started. However, this view can only be
maintained for a TEMPORARY period, because the rollback segment will cycle
and the rollback entries needed to maintain "read consistency" will be
overwritten. During a database read a timestamp is checked to determine if
changes have been made since the transaction started, any changed data is
ignored and the corresponding historical rollback entry is read from the
rollback segment. NOTE that ORACLE uses rollback BOTH "active" and
"released" rollback entries, as both may contain data needed to build read
consistency. Before overwriting released rollback entries, ORACLE does not
and cannot check if current read transactions will need or not need the
data.

Using the example of the banks statement report, ORACLE will read the
transaction history table entries, however a timestamp indicates that
changes have been made since the transaction started, that data is then
ignored, and the old data is retrieved from its corresponding rollback
entry. Thus the read of the debit/credit history table is made consistent
with the time at which the statement generator started running.

To achieve read consistency oracle MUST be able to read EVERY relevent
rollback entry created since the transaction started. If ANY rollback
segment completes a cycle, essential rollback entries could be overwritten,
then ORACLE will unable to deliver read consistency (a SNAPSHOT), in which
case ORACLE will fail the transaction and generate the following error:

ORA-1555 snapshot too old (rollback segment too small)
ORACLE speak for :
"I cannot build a read consistent view of the data you require because
other processes have generated enough rollback entries to cause just one
rollback segment to cycle, overwritting necessary data, during the period
your transaction has been running. Because I cannot now create a read
consistent view of the data you require, I terminated the transaction"

How to resolve ORA-1555 error ? , LOOK AT NOTE 3807!

* This is to adjunct the information in note 3807 not a replacement of it.

27.05.2008 Page 5 of 15

 Note 60233 - Oracle rollback segments, more information.

To understand the resolution in note 3807 (ORA-1555) lets go back to our
analogy of a train traveling around a loop of track. Any solution involves
increasing the period before the train completes a circuit and then reuses
same piece of track. I can think of three ways to do this:

1. Slow down the train. Run the report when less update activity is
happening e.g. over the weekend / at night etc. With less update activity
happening, less rollback entries are being written, thus increasing the
period before a rollback segment will cycle. Remember rollback entries are
only created by transactions make changes to the database (insert, update
or delete, known as DML statements, Data Manipulation Language), so
separating all your reporting operations from your updating operations is
very effective.

2. Lengthening the track. By increasing track length the train will take
longer before completing a full circuit. Increasing the size of the
rollback segments will increase the cycle time of the rollback segments. A
100MB rollback segment will hold 10 times the number of rollback entries,
hence 10 times historical data as a 10MB segment. Thus a 10 fold increase
in rollback segment size should give a 10 times increase in the time a read
transaction can run before a rollback segment is cycled and the dreaded
ORA-1555 is generated.

3. Increase the number of tracks, reducing the load on any individual
track. Having more rollback segments (of the at least the same size) will
spread load of rollback entries, increasing the cycle time of individual
rollback segments. Having 100, 10MB rollback segments should give 10 fold
increase in the period ORACLE can maintain a read consistent view of the
database compared to 10, 10MB rollback segments

* * * * * Questions and Answers regarding rollback segments * * * * * *

Q. Why are my rollback segments not automatically shrinking back to the optimal size
?
A. After completion of a large update transaction, extents that have been
dynamically added are not automatically deallocated, as this would reduce
the period that ORACLE can maintain read consistency. Before shrinking
rollbacks, ORACLE first must allocate another update transaction to the
same rollback segment, then this transaction must generate enough rollback
entries for ORACLE to advance the rollback pointer to the boundry of the
current extent. The next extent is then deleted IF AND ONLY IF the follow
3 conditions are meet :
1.) The next extent does not contain ANY active rollback entries.
2.) The total size of the rollback segment is greater than optimal.
3.) Deleteing the next extent will not reduce the total size of the
rollback segment to less than the optimal size
ONLY THEN will ORACLE release the next extent and hence reduce the size of
the rollback segment. Thus you need update activity by additional
transactions before rollbacks are shrunk (strange but true !). If the
next extent DOES contain active rollback entries ie. 1.) is false, then
ADDITIONAL exents will be added to the rollback segment and it will grow
even bigger.

To force the shrink of a rollback segment you can use the command
(as of Oracle 7.3 and above inc Oracle8)

27.05.2008 Page 6 of 15

 Note 60233 - Oracle rollback segments, more information.

alter rollback segment <seg> shrink;
eg. SVRMGR> alter rollback segment RBS_1 shrink;
this will shrink rolback segment RBS_1 to its optimal size if there
extents free of "active transactions".

Q. To avoid getting ORA-1555 I increased the optimal size of my rollback segments,
but I still got an ORA-1555 error, WHY ?

Why did increasing the optimal size of my rollbacks not cause them to grow bigger ?
A.

 *** INCREASING OPTIMAL SIZE OF ROLLBACKS GENERALLY ***

 *** DOES NOT HELP IN AVOIDING ORA-1555 ERRORS !!!! ***

Increasing the optimal size of rollback segment does not cause ORACLE to
automatically increase there size unless a large transaction generates
enough rollback entries to cause the extension of the rollback segments to
that size. Setting the optimal size just sets a "high water mark", thus
oracle will shrink a large rollback segment back to its optimal size, but
not make a smaller rollback segment grow to its optimal size. To make a
rollback segment bigger look at the following example using sqldba:
SQLDBA> alter rollback segment prs_01 offline;
SQLDBA> drop rollback segment prs_01;
SQLDBA> create rollback segment prs_01 tablespace PSAPROLL storage (
initial 1M next 1M optimal 100M minextents 100 maxextents 500);
SQLDBA> alter rollback segment prs_01 online;

 *** IT IS THE COMBINATION OF "next" SIZE ***

 *** AND "minextents" THAT FORCES ORACLE ***

 *** TO CREATE BIGGER ROLLBACK ***

Q. Why set all rollbacks the same size?
A. ALL (ALL means every one) rollback segments should be set to the same
size (the exception is the "SYSTEM" rollback segment as this is used
exclusively for internal oracle's processing). Remember that if you receive
an ORA-1555 it means that JUST ONE rollback segment has been completely
recycled during the run time of the read consistent transaction. Thus
having nine 100MB rollback segments and a single 1MB rollback segment will
be NO MORE as effective in preventing 1555's as JUST HAVING ten 1MB
rollback segments.

Q. How can I check the sizing of the rollbacks?
A. You can look at rollback segment sizing using your unix ora<SID> login,
starting sqldba, connect internal and then issuing the command:
SQLDBA> select a.name, b.optsize, b.hwmsize
 from v$rollname a,
 v$rollstat b
 where a.usn = b.usn;
(See note 82634)
Or you can use transaction st04 (30+)
Tools -> Admin -> Monitoring -> Performance -> Database -> Activity

27.05.2008 Page 7 of 15

 Note 60233 - Oracle rollback segments, more information.

Then -> Press "Detailed Analysis Menu" -> Press "Display V$tables" ->
Choose rollback segments (V$rollstat)

Q. How can I check how long it is taking for a rollback segment to cycle so I can then
estimate the how big to make my rollback segments ?
A. Good question! if you find a method let me know, as far as I can tell
you can only guesstimate it by looking at the rollback write and "wrap"
statistics from table v$rollstat.

Q. Why is having bigger rollback segments, more effective in prevention of 1555's,
than having more rollbacks of the same size ?
A. The smaller a rollback segment is, the greater the chance that a large
update process can generate enough rollback entries to cause a rollback
segment to cycle. Hence from the point of view of preventing 1555's,
increasing the SIZE of the rollbacks is MORE effective than increasing the
NUMBER of equal sized rollback segments. I am not saying that increasing
the number of same size rollback segments is not an effective method of
resolving 1555's, it is just not quite as effective (especially when update
transactions occur that generate enough rollback entries to require
additional extents to your current rollback segments).

Q. I have increased the size of my rollbacks and I have increased the number of
rollbacks segments and I still get 1555's what do I do now ?
A. Apart from running the report at a different time (when less update is
happening) you just have to keep increasing the size and perhaps numbers of
rollback segments until the 1555 is not generated. At one site I know they
needed a total of 3.5 GB of rollbacks to prevent 1555's. If you are having
serious problems with long running reports and rollback segments an
Earlywatch session will help identify and hence recommend possible
solutions for your site. (Tip, double check that all rollback segments are
actually the same size AND are at least the SIZE of your OPTIMAL size
setting. This is a major area of confusion, the problem is not HOW big the
rollbacks can GROW TO, but HOW big the rollback segments ARE NOW !. So
first check that all your rollback segments are already BIG! see above
question on how to check each rollback segments ACTUAL size)

Q. I have an emergency situation! An internally developed ABAP report fails with an
ORA-1555 error. It works in the testing environment, but in production it runs for
several hours before terminating with an ORA-1555 error. Management NEEDS the
report URGENTLY and I am responsible to make it work, PLEASE HELP ME SAP !
A. DONT PANIC! The real "long term" solution to this problem is to look at
why the report is taking so long to run (SQL trace, indexing, use temp
tables etc.) but of course this takes TIME and your management needs the
report yesterday! So basically you need a temporary fix while your
developer tunes the ABAP (better indexes, temporary tables, procedure flow,
sub reports, closing and reopening cursors) to run faster reducing the
chance of any rollback segments looping

 TWO TEMPORARY WORKAROUNDS FOR ORA-1555's ERRORS.

Fix 1.) "DO IT WHEN NOBODY ELSE IS DOING IT"

Can the report be run during a period of little or no other SAP system

27.05.2008 Page 8 of 15

 Note 60233 - Oracle rollback segments, more information.

activity ? eg. at night on the weekend. If you have a time window of
lowsystem activity, then run the report then! EASY!.

If the rollback segment pointers are stopped or moving very slowly the R/3
server will have more "real" time in which to run the report to completion
before one of the rollback segment completes a loop. Imagine that a
rollback segment as a clock with a second hand, however unlike a normal
clock the second hand can speed up or slow down depending on the volumn of
modifications being made to the database. By running the report when the
second hand is moving slowest, hence taking longer to complete a cycle,
read consistency should be maintained until the report completes.

Fix 2.) "BIGGER IS BETTER".....for ORA-1555, but not for anything else.

If Fix 1 is impossible, then to prevent rollback segments looping bigger
rollback segments are needed (allocating datafile blocks to rollback
segments => longer read consistency period). Because the exact sizing of
the rollback segments cannot be predetermined, I recommend you allocate any
spare disk space available to temporarily increase the size of your
rollback segments. The "bigger is better" method, basically means "Using
spare disk space to create very big rollback segments". Using the clock
analogy, the "ticking" of the second hand remains constant, but we add more
seconds to the minute (eg. from 60 to 500 seconds to a minute). Again by
increasing the time it takes before any rollback segment completes a cycle,
the longer oracle can maintain read consistency, hence the longer the
report can run before failing with an ORA-1555.

--
WARNING: The following is not in any way recommemend by SAP. This is a
temporary workaround to avoid ORA-1555 errors. If you do not understand
what is being done then DON'T TRY IT on your system ! If you are not
confident using sapdba and sqldba, again don't try it !

The example below is based on a UNIX system using normal file systems. If
your operating system is NT or your filesystems are raw disk partitions
then the method is the same, however the commands being used will be
different.

STEP 1. Determine how much free space is available.
Check the sapdata filesystems, can new sapdata file systems be created
using spare disks or spare disk space from volumn groups ? Are there other
non sapdata file systems with large chunks of free space ?
 EXAMPLE
 sapdata filesystem have the following :
 sapdata1 has 500M free
 sapdata3 has 300M free
 sapdata5 has 100M free
 sapdata6 has 400M free
 Examination of non sapdata file systems:
 /usr/sap/old has 1GB free
 Examination of free disks or disk volumns:
 show that a 2GB disk is free and available for temporary use.
 TOTAL space available for temporary use :
 500+300+100+400+1000+2000= 4300MB

STEP 2. Assign additional space from step 1. to new sapdata file systems.
For non sapdata file systems on unix you can use symbolic links to create
temporary sapdata directores

27.05.2008 Page 9 of 15

 Note 60233 - Oracle rollback segments, more information.

eg. ln -s /usr/sap/old /oracle/PRD/sapdata10
For spare disks etc. you will have to use the operating system utilities (
sam, smitty etc. see your installation guide for details) to format and
mount new sapdata filesystems eg. /oracle/PRD/sapdata11.

STEP 3. Now add the additional space the PSAPROLL tablespace.
sapdba -> c) tablespace adminstration -> a) Tablespace , enter PSAPROLL ->
f) Alter tablespace PSAPROLL Add Datafile.
In the above example your will create 6 additional datafiles, 4 on the
existing sapdata filesystems, 1 in the symbolic linked directory
/usr/sap/old, 1 on the spare disk mounted as a new sapdata filesystem.

STEP 4. Now determine the exact size of your PSAPROLL tablespace :

Method 1: Operating System Method.
sapdba -> c) Tablespace adminstration -> c) Free space and fragmentation
of all tablespaces -> Find figure of "Total" column for the PSAPROLL
tablespace (in Kbytes)

Method 2: From SAP menu -> Adminstration -> Monitoring -> Performance ->
Database -> Tables/Indexes -> (Database system) Space statistics ->
Tablespaces Look at Total size for PSAPROLL tablespace.
 Scale: Day Size (Kbyte)
 Tablespace Total
PSAPROLL 4,856,000 (this is 4.8GB)

STEP 5. Find out how many rollback segments "PRS_x" you have in use ? (See
question "How can I check the sizing of the rollbacks" on how to see this)
eg. 10 rollback segments PRS_1, PRS_2, PRS_3, PRS_4, PRS_5, PRS_6, PRS_7
PRS_8, PRS_9, PRS_10

STEP 6. Calculate the maximum size you can make each rollback segment eg.
4,856 (MB) / 10 (because 10 rollback segments) = 480 MG each Thus we can
create 10, 480 MB rollback segments.

STEP 7. Create, and run a rollback segment size changing script. For each
rollback segment PRS_1 thru PRS_10 (or whatever number of rollback segments
you have) edit or vi a file eg. /tmp/changeroll.sql inserting the following
lines:
--
spool changeroll.log
alter rollback segment prs_1 offline;
drop rollback segment prs_1;
create rollback segment prs_1 tablespace PSAPROLL
storage (initial 1M
 next 1M <---- Each addition extent is 1MB
 minextents 480 <---- This line is the critical !
 maxextents 500
 optimal 480M); <---- Optimal is not so important
alter rollback segment prs_1 online;
alter rollback segment prs_2 offline;
drop rollback segment prs_2;
create rollback segment prs_2 tablespace PSAPROLL
...
... etc etc upto prs_10 or however many rollback segments you have.
...
spool off;

27.05.2008 Page 10 of 15

 Note 60233 - Oracle rollback segments, more information.

Note: I recomend you split the script into many sub scripts eg.
/tmp/changeroll_p1.sql, /tmp/changeroll_p2.sql each with a single set of
functions (eg. offline prs_1 thru 10, drop prs_1 thru 10, create prs_1 thru
10) in that way you can fix any problems before the next step is started (
not many people can get a 100 or so line script to run perfectly the first
time).

Now start the script
sqldba mode=line
connect internal;
@changeroll.sql
...script runs
exit
review (vi changeroll.log) for errors

STEP 8. Rerun your long running report, and hope it works. If it
runs for many many hours, one example ran for 18 hours then crashed, then
there is not much more you can do! I generally cry, kick my PC, then go
down to the pub and drink lots of beer :-). But seriously, if all spare
space available has been added to your PSAPROLL tablespace and created the
bigest rollback segments possible, and the report still crashes with an
ORA-1555, then a serious look at what the report is doing and how to make
it run faster is the only remaining solution.

STEP 9. Return the system back to "normal" once a permanent solution is
found. Thus you must resize the rollback segments back to the orginal size
and rebuild the PSAPROLL tablespace, this requires R/3 down time !
create a script eg. /tmp/rebuild.sql similar to the following example.

Note: Again I recomend you split the script into many sub scripts eg.
/tmp/rebuild_p1.sql, tmp/rebuild_p2.sql each with a single set of actions
(eg create roll_temp, offline prs_1..thru 10, etc. etc.) in that way you
can fix any problems before the next step is started.

set echo on
spool /tmp/rebuild.log
create rollback segment roll_temp tablespace SYSTEM;
alter rollback segment roll_temp online;
alter rollback segment prs_1 offline;
...repeat for prs_2 thru prs_10 (or however many rollback segment you have
in use)
drop rollback segment prs_1;
...repeat for prs_2 thru prs_10 (or however many rollback segments you
have in use)
drop tablespace PSAPROLL;
create tablespace PSAPROLL datafile
'/oracle/<yoursid>/sapdata/roll_1/roll.data1' reuse;
create rollback segment prs_1 tablespace psaproll
storage (initial 1M next 1M minextents 16 maxextents 500 optimal 16M);
...repeat for prs_2 thru prs_10 (or however many rollback segments you
have in use)
alter rollback segment prs_1 online;
...repeat for however each rollback segment created
alter rollback segment roll_temp offline;
drop rollback segment roll_temp;
spool off;

sqldba mode=line

27.05.2008 Page 11 of 15

 Note 60233 - Oracle rollback segments, more information.

connect internal;
@/tmp/rebuild
exit;
review the /tmp/rebuild.log file for errors.

Q. There is plent of free space available in my PSAPROLL tablespace why then do I get
ORA-1555's saying that my rollback segment is too small ?
A. If you read the above background in regard to rollback segments you will
notice that read transactions do not generate rollback entries, hence it is
impossible for such a transaction to cause your rollback segment to
extended in size ! (using a chunk of freespace in your PSAPROLL
tablespace). A rollback segment containing data data needed by ORACLE to
generate a read consistent view was overwritten with new rollback entries
generated by an update transaction. This can only occur when a rollback
segment cycles during the run time of your failed (1555) transaction. By
increasing the ACTUAL size of your rollback segments (minextents, optimal
size) you can increase the cycle period of your rollback segments and hence
increase the length time ORACLE can maintain read consistency.

Q. When setting the storage parameters for a rollback, why is defining a large number
of smaller extents better than 2 large extents.
A. Imagine that a transaction begins, rollback entries start being writing
at a point just before one of the rollback segments extent boundaries.
While this transaction remains active, that WHOLE extent will be
unavailable for reuse by ANY transaction. Thus a rollback segment of 2
equal sized extents in the worse case may have only 50% (1/2) of the total
allocated space available to any further writing of rollback entries.
However having 20 equal sized extents will mean that 95% (19/20) of the
total rollback storage allocation is available to a transaction.

Q. I have a large data load to do, how do I prevent getting ORA-1562 and ORA-1628.
A. Have a look a note 3807 for the solution.

Q. What are the negative impacts of using huge rollback segments or large numbers of
rollback segments? ie. having the total size of all rollback segments in the order of 100
megabytes or more (maybe a few gigabytes).
A. For optimal OLTP (online transaction processing) performance, many tiny
(a few hundred KB at most) rollback segments work best! Why? Because this
will mean that the entire rollback segment will be more likely to be
cached/buffered in the SGA (physical memory) thus minimizing expensive
reads/writes to the disk. Now before you start reducing all your rollback
segments to 16K, remember the smaller the rollback segment, the shorter the
time oracle can maintain read consistency, that means lots of ORA-1555's.
Also larger updates will cause rollback segment extension, which is even
more time consuming for disk reads/writes, locking e tc. I would also like
to add that reducing rollback segments to sizes less than default (8 or
16MB) is not supported by SAP , if a SAP TCC consultant says "do it" then
OK, but otherwise don't reduce your rollback segments to anything less
than default!
Now what about the question increasing Oracle R/3 system's rollback
segments well above the recommended default size! Is there a performance
penalty to doing this? Or is it just an issue of disk space? For example
imagine a site that is getting ORA-1555's and has if required, plenty of
disk space to allocate to rollback segments, maybe the administrator is

27.05.2008 Page 12 of 15

 Note 60233 - Oracle rollback segments, more information.

thinking:
 "I don't care about allocating a couple of GB of disk for rollback
 segments, I just want to kill the ORA-1555 problem! I will make the
 rollback segments REALLY BIG",
This will certainly kill the ORA-1555 problem, but should the
administrator worry about any performance degradation of his/her system?
Remember the of inserts updates or deletes requested by your R/3 system is
not changed by having bigger or smaller rollback segments! Only reducing
the number of users, or what they do, will change that! Since going to your
board of directors recommending that "limits" be placed on customers
ordering stuff from your company or executives running financial reports,
will be detrimental to your career, you have little option but to work with
it! As the volume of rollback entries written to your rollback segments is
independent of rollback segment size, the only remaining consideration is
if the rollback segment will be completely cached in the buffer cache
(Oracle SGA) or not? If the rollback segment is 100% cached then the
updating process won't have to wait for a disk read to read the "tail" of
the rollback segment from disk, thus oracle can just immediately write the
new rollback segment entries. If the rollback segment is not 100% cached
and the tail of the rollback segment must be read from disk anyway, then
using very large rollback segments (eg. 500's MB) compared to using large
(eg. 50's MB) will make zero difference.
Now my feeling on this subject is that if you must create bigger rollback
segments to avoid ORA-1555 then just don't worry about any potential
performance degradation resulting from using larger rollbacks. I am
interested in anyone who believes or experience have shown them otherwise,
send me mail?
If you are super concerned about performance, and if you know when the
transactions that require a long period of read consistency are started,
then it's feasible to consider createing some large rollback segments that
are put "online" and the smaller "normal" rollback segments taken
"offline" (alter rollback segment PRS_XX offline;) prior to starting the
long running transaction. After the long running transaction is finished
the smaller rollback segments are brought online (alter rollback segment
PRS_XX online;) again and the large rollback segment(s) then taken
offline, this could be done while system R/3 system is up and ru nning for
user access. For example I may use this method to perform a large client
copy on a QAS (quality assurance system) ! But I would be very cautious
about doing this on a productive system!
Again I would like to stress the value of tuning your customizing!
ORA-1555's on production systems in most cases are a wake-up or a larm bell
saying "Mr/Ms Administrator, I've got long running transactions on my R/3
system". Creating additional rollback segments and/or bigger rollback
segments will prevent ORA-1555's, but I would then start asking some
questions "Is what is being run necessary? Why does it take so long? Can
the ABAP's be tuned better? Can it be run at a different time? Is there
another way of doing this?" poorly tuned ABAP's not only run slowly, but
drag down the overall performance of your system. Poorly tuned customizing
can and does turn powerful servers into impotent pieces of junk.

Q. Can I run my system permanently with one BIG rollback segment, as per the
temporary solution in note 3807 ?
A. It depends on your system and the level of update,insert and delete
operations. For example, when a dialog process updates a table eg. VBLOG
then rollback segment entries must be created, to do this oracle searches

27.05.2008 Page 13 of 15

 Note 60233 - Oracle rollback segments, more information.

for free rollback segment buffers. If the buffers are being used by other
update process then the dialog process must wait until buffers freed.
Obviously having processes waiting around is BAD for performance. Adding
more rollback segments, increases the number of rollback segment buffers,
reduing the possiblity of rollback buffer waits. (issue is called "rollback
segment buffer contention") Thus if your system has very few active
processes coupled with some very large insert/update/delete tasks then it
may be possible to run the system with one rollback segment. However in
general I would see no reason to have less than 10 rollback segments online
at any one time, by running less that 10 rollback segment could cause
serious performance problems on your system. I would never use one rollback
segment unless I needed to do some kind of mass data transfer or load as
per note 3807.

Q. I have a system with low numbers of active transactions, ie. few uncommited
transactions active at any point in time. However the init<SID>.ora parameter
"transactions_per_rollback_segment" is set to the default of 20, which is much higher
than the average number of transactions active at any point in time. Does this result in
oracle assigning a disproportionately high number of transactions to just a few
rollback segments ?. If this is true, then the rollback segments with the
disproportionately high transaction volumn will cycle very quickly, reducing the period
of time oracle can maintain read consistency hence increasing the chance of
ORA-1555's errors occuring ?

e.g. consider a system with 20 rollback segments and an average of 43 active
transactions and the init<SID>.ora parameter transactions_per_rollback_segment=20.
Would this result in the first 20 active transactions to be assigned to RBS_1, with next
20 to RBS_2, and the last 3 to RBS_3, leaving and the other 17 rollback segments
unused until at some point in time the number of transactions increased beyond 60 (3
rbs with 20 transactions each)
A. Well my answer is no ! Having a the default value of
"transactions_per_rollback_segment" will not impact upon the occurence of
ORA-1555. This is because oracle attempts to average out the transaction
load to ALL the online rollback segments. Oracle assigns transaction to
rollback segments via the following logic:
 1) Always assign a transaction to the rollback segment with the least
 number of active transactions.
 2) If two or more rollback segments have the same number of active
 transactions then choose the rollback that had a transaction
 allocated the longest time ago.
This strategy will on average keep rollback segment entries for the longest
possible time hence lessening the chance of ORA-1555. The parameter
transactions_per_rollback_segment I believe serves no purpose in a
"normally" configured oracle R/3 system (except for oracle parallel
server)
The purpose of the parameter "transactions_per_rollback_segment" is that
when combined with the value of parameter "transactions", upon DB instance
startup oracle will try to allocate the number of rollback segments needed
to retain the the total number of transactions using the value of
transactions_per_rollback_segment. e.g. if transactions=105 and
transactions_per_rollback_segment=20, oracle will try to allocate 6
rollback segments (rounding up the calculation of 105/20 = 5.25 < 6).
HOWEVER this is only in the case in installations that is use "PUBLIC"
rollback segments which are not used with standard R/3 systems. A correctly
configured SAP system will use the default typeof rollback segments known
as "private rollback segments". When using private rollback segments
another init<SID>.ora parameter "rollback_segments" explicity defines the

27.05.2008 Page 14 of 15

 Note 60233 - Oracle rollback segments, more information.

names of each of the rollback segment to attach (online) to the oracle
instance upon startup. If you look at your systems init<SID>.ora (again
excepting parrallel server) you may see something like:
rollback_segments = (prs_1, prs_2, prs_3, prs_4, prs_5,
 prs_6, prs_7, prs_8, prs_9, prs_10)
In this case your system with use the 10 rollback segments prs_1 thru
prs_10 and oracle will try to average the transaction load evenly to those
10 rollback segments. The parameter transactions_per_rollback segment will
not have any impact on this allocation of rollback segments nor
transactions to rollback segments.

Header Data

Release Status: Released for Customer
Released on: 07.06.2004 11:12:26
Priority: Recommendations/additional info
Category: Help for error analysis

Main Component BC-DB-ORA Oracle

The note is not release-dependent.

Related Notes

Number Short Text

489690 CC INFO: Copying large production clients

426021 Archiving object BC_DBLOGS: Termination with Oracle DB

383823 MP38: Restriction according to materials

360087 Update task termination: Rollback segment too small

338222 Balance carryfwd: DBIF_RSQL_ERROR: Snapshot too old

181275 Reporting: error ORA 1555 and COMMIT WORK

165247 Notes on creating rollback segments

125116 REGUP, REGUH and BKPF in 4.0B upgrade with IS F3.04

123793 SIS variant configuration:Termination S126 -> S127

118919 Problems RMCVISCP (SQL error 1555)

102034 R3trans: Control of the COMMIT intervals

96296 CC-ERROR: Database problem in client copy

88656 R3trans: Duplicate key composite SAP note (Release 4.0-4.6)

82634 PSAPROLL-Which rollback segments created, and how?

68896 R3trans: Performance problems and cluster

67205 CC-INFO: Copying large and productive clients

27.05.2008 Page 15 of 15

 Note 60233 - Oracle rollback segments, more information.

Number Short Text

63639 Error in activating an operating concern

49111 FI-SL: conversion of the line items is too slow

35415 CC-TOPIC: Memory space analysis / Test run

16277 ORA1562 / ORA1628

13655 SAPDBA: Long runtimes: Exp./imp./reorganization

3807 Error messages regarding rollback and undo segments

Attributes

Attribute Value

Database system ORACLE

